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Drift-Free Ma g netic Geometries

in Adiabatic Motion
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Abstract

There exist magnetic fields in which particles bouncing between mirror

points experience no net first-order guiding center drift. In such fields,
even though the instantaneous gradient and curvature drifts are not zero,

their total effect integrated over any bounce period vanishes, so that

particles merely wobble back and forth around fixed field lines. A class

of two-dimensional drift-free fields, somewhat resembling the configu-

ration found in the geomagnetic tail, is described; several proofs of the

drift-free property are given, including some that suggests that the pro-

perty of vanishing net drift might extend to non-adiabatic orbits. A general

criterion for identifying drift-free fields is developed and a case of

motion in a nearly drift-free field is also investigated. The theory is

applied to the plasma sheet in the earth's magnetotail and observational

evidence is presented suggesting that the magnetic field there indeed

approaches a drift-free configuration,



Introduction

The purpose of this work is to examine a certain class of charged

particle motions in a magnetic field. The motions involve "magnetic

mirror" geometries in which two independent periodic modes are possible

- gyration around field lines and "bounce" between mirror points - with

two associated adiabatic .invariants L and J .The fields discussed

here have the additional property that the net guiding center drift,

averaged over any bounce period, vanishes; as will be seen, an analogous

property can also exist for non-adiabatic orbits.

An example of such a configuration is given in the next section: it

has a finite curl and therefore it is not certain that particle distri-

butions can be found which would provide the required current density ,

in the absence of any net charge transport. However, self-consistent

plasma distribution functions certainly will exist for fields which

are not drift-free but merely approach a drift-free configuration: in

such cases the integrated drift does not vanish but is merely small, so

that the field can carry a substantial plasma density with only a modest

current density. An analogous situation exists in dynamo theory where

Cowling [193L4] proved the impossibility of axisymmetrical dynamos,

yet Braginskii 1964 a, I] derived useful models by assuming a slight

deviation from axial symmetry,

A magnetic configuration which can be treated as a perturbed version

of a drift-free geometry apparently exists in the plasma sheet of the

earth's magnetotail, explaining why the total current carried by this
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sheet is relatively small, considering the amount of plasma in the sheet.

The outer magnetosphere of Jupiter, as observed by Pioneer 10 [Smith et

al., 974] can also be represented locally by a two-dimensional drift-free

field, to which a small component is added to preserve axial near-symmetry,

so that it, too, qualifies as a nearly drift-free configuration. The field

in Jupiter's outer magnetosphere might also be approximating an axisymm-

etric drift-free geometry but, although such geometries are investigated

in what follows, it is not known whether they actually exist.

A Simple Example

Consider a two-dimensional magnetic field of a form which is frequently

used in models of the magnetotail plasma sheet

B B(z) Bz (1)
B X z-

where

Bz = constant (2)

Field lines of this configuration, in any plane of constant y and for

the case where Bx = z, are given in Figure (1) , which also depicts

(schematically) the projection of the orbit of a particle undergoing

guiding center motion. One may now ask, does such an orbit undergo a slow

drift in the y direction, orthogonally to the plane of the figure?

This problem is easily handled by the mathematical device described

below, although more direct proofs also exist and will be presented.
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Suppose that an electric field

A
EOZ (3)

exists across the magnetic field;O(An electric field probably does exist

across the plasma sheet, so that if equation (1) is assumed to represent

a model of the magnetotail, equation (3) should probably also be assumed;

this, however, is not relevant to the present calculation, in which the

electric field is merely a mathematical device.) Let v be the bounce-
y

averaged magnetic drift velocity of the given particle in the y direction..

and let q be its electric charge; the particle then will increase its
kinetic energy W at the rate q E0 vy per unit time.

However, if the problem is transformed into a frame moving with the
uniform velocity

u = (E/B) (4)

then in the non-relativistic approximation the electric field vanishes.

If vy remains unchanged by the transformation (see below) then in the
moving frame no energy gain is possible: this can only be reconciled
with the previous assumption if v = 0 , i.e. the particle's guiding

center "wobbles" around the guiding field line with no net drift.

To see whether v is conserved one should note that to the lowest
relativistic order the magnetic field is not changed by the transformation

to the moving frame and therefore any portions of v which depend ony
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B alone will also transform unchanged. In addition vy will contain some

terms involving the electric field [Northrop, L963, eq. 1.17] . The

above argument then states that v = 0 for any finite E0 and it is

plausible to assume (although this is not a rigorous proof) that the

same also holds in the limit E0 = 0, in which case the magnetic field

is indeed drift-free.

If this approach is accepted one.obtains two additional insights

into this type of motion. First, there is no need to assume that the motion

is adiabatic: the same conclusions should also be valid for non-adiabatic

motion, as long as v is suitably defined. An exception occurs in the

limit Bz= 0 , when (4) can no longer be used; indeed, in this limit mean-

dering modes of motion exist [Sonnerup, 1 ] which have finite vy

Nearly Drift-Free Fields

A second advantage of the above approach is that it allows one to estimate

vy in some cases in which the geometry is only approximately drift-free.

Suppose Bz  is not constant but varies slowly with x ; then the

preceding argument no longer holds, since u is no longer a uniform

velocity. Assume now

Bx(0) - 0 ()

(as in the field in Fig. 1) and consider the adiabatic motion of a charged

particle in the plane z = 0 . The electric drift will carry such a

particle in the x direction and due to conservation of the magnetic
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moment p the particle's kinetic energy W will change with x at

the rate

'W/lx = P rbBzl x (6)

By previous arguments the rate with which W changes in time equals

q E0 y and it can also be found by multiplying (6) with the electric

drift velocity EO/Bz , giving

v = (P/qBz) 3 Bz/ x (7)

This can also be written as

S vRg /L (8)

where v is the particle's velocity, R its gyration radius and Lg x
the scale length of the variation of Bz . By way of comparison, the

instantaneous guiding center drift velocity is of the order of v R /L ,

where L is the much smaller scale of variation of the total field.

The derivation of v for adiabatic particles not confined to

the equatorial plane is much more difficult and requires the bounce-

averaged Hamiltonian K(cO, P, J),discussed later on.

Alternative Proof s

Consider Newton's equations of motion for a particle of charge q

and mass m in the field of (1). The x component of the acceleration

is
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= qBz / m (9)

and it integrates to

x =q Bz (Y - Y0 )/m (10)

If the motion in x is periodic, as happens in the adiabatic case,

y will also vary in a periodic fashion. Even if the motion is non-

adiabatic but x varies in a periodic or almost periodic fashion,

the same property will hold true for y and no net drift will occur,

showing that the motion is drift-free. As before, the argument cannot

be used in the limit Bz = 0 , since X vanishes in that case, and as

has already been noted, the motion in that limit is indeed not drift-

free.

A more conventional proof of the drift-free character of adiabatic

motion in the field (1) involves the averaging of the instantaneous

guiding center drift over a bounce period. The calculation is lengthy

and is therefore given in the appendix; it is assumed there that the

magnetic configuration possesses mirror symmetry with respect to the

plane z = 0 but, as is shown in what follows, this requirement is

not essential.

The Averaged H amilt onian

A powerful tool for treating motions in a magnetic mirror geometry is

provided by the bounce-averaged Hamiltonian K( a, P, g, J), introduced

by Northrop and Teller [190 . Its use represents a second averaging,
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over the periodicity of the mirroring motion, in addition to the

gyration averaging which leads to the guiding center theory.

Let (o(,o) be Euler potentials of the magnetic field (e.g.

review by Stern [LO] ) and let a particle move in this field and

conserve the two lowest adiabatic invariants p and J . In the absence

of electric fields the Hamiltonian K( , ,, J) for the averaged

motion then equals the particle's kinetic energy W

Attention will be confined to cases in which, due to some symmetry,

K does not depend on p - in particular, either to 2-dimensional

fields where

B = B(x, z) ; B = 0 ; = y
y

or to axially symmetric fields where (using cylindrical coordinates ,

z and )

B = B( , z) ; B = 0 ; =

The drift velocity (combining gradient and curvature drifts) then

parallels the direction of VP and its average value can be found by one

of Hamilton's equations of motion

<~3 = (c/e) 1 K/'O, (11)

In particular, if K is independent of both o( and , the average

drift in the direction of V? vanishes and the geometry will be drift-

free. This is a general condition for drift-free geometries but it does
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constitute a useful criterion for identifying such fields, since the

explicit form of K is difficult to derive e.g. Chen and Stern

We therefore proceed to develop an alternative criterion.

The Euler potentials are related to B through

B Vo V (12)

Let it be first assumed (an assumption which will later be removed)

that 0 has mirror symmetry with respect to the plane z = 0 , i.e.

for a 2-dimensional field

o((x, z) = (, -z) (13-a)

and for an axisymmetric field

0(( ?, z) = (, -z) (13-b)

If a particle guided by the field line (o, P) of this field has
it

kinetic energy W Tadiabatic invariants ( ., J) an'd reflected at

z=z , then

S= (4/m) (2W)1/2 (1- B/Bm)1/2 ( 3s/ z)lo dz (14)

0

where Bm = B(Zm,o ). The last equation implies that a function f(zm,

exists such that

The f(magnetic ment , on the other hand, satisfies

The magnetic moment p , on the other hand, satisfies
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W/P = Bm m B(zm,o( ) (16)

Elimination of zm between the last two equations implicitely gives

the functional form of W( o, , j) which, in the absence of electric

fields, equals the Hamiltonian K of (11). If W is independent of

( , this means that such an elimination removes c4 as well, which

will only happen if the right hand expressions depend on each other,

i.e.

f(zm, ) = F(B(zm, )) (17)

This is easier to express if (14) is transformed to a form in which

the field intensity B becomes the integration variable, namely

Bm

I(, B) = (I - B/Bm)1 /2 bs/ B dB G(Bm) (18)

Beq(()

Here Beg = B(z=0,o) is the equatorial field intensity on the field

line with the given value of o( and the last equality, involving some

function G independent of o( , must hold if the field is to be drift-

free.

A simple extension of the arguments of the section dealing with

nearly drift-free fields shows that Beg may not depend on o( because

if such a dependence existed, then in the limit J --* 0 a particle

would experience a net drift. In that limit a particle is confined to

the plane z = 0 : assuming an electric field

E = E0 V (19)



it is found that the electric drift of such a particle would be in the

direction of Vo( . If B were allowed to vary with o then the
eq

particle's energy would change in the course of its electric drift due

to the conversation of p and, as outlined earlier, this would imply

a net magnetic drift in the direction of V

The condition that I is independent of o( thus reduces to the

requirement that bs/ B at constant 4( depends on B alone - i.e.

s s(B) (20)

Another way of expressing this relationship would be in the form of

a Jacobian

b(s, B)/I(q1 , q2 ) = 0 (21)

where (ql, q2 ) equals on (x, z) or (Y, z) depending on the geometry.

In the cases discussed here both s and B can be expressed in terms

of the Euler potential o4 and its derivatives and (21) then reduces

to a rather complicated integro-differential equation.

In all this the requirement of symmetry expressed by equations (13)
t, provided (5) holdsi

can be waived. The reasoning behind this is outlined below: it can be

readily expressed in conventional mathematical terms but doing so has

little real effect beyond lengthening the presentation.

Suppose that the symmetry condition holds and consider two points

P1 = (x, z) and P2 = (x, -z) in a two-dimensional field, symmetrically

located on the same field line at equal distances from the plane z = 0



(for axial symmetry replace x everywhere by Q ). One now readily

finds (e.g. from equations (A-1) and (A-2) in the appendix) that both

the curvature drift and the gradient drift at P and at P2  are the

same. By extension it can also be shown that the average drift of either

kind experienced by the particle along the portion of its guiding field

line above z = 0 is the same as the corresponding average drift below

z = 0 . Since the average gradient drift in any period cancels the average

curvature drift, it also follows that a similar cancellation holds Just

for the portion of the orbit above z = 0 and just for the portion below

z = 0 . Thus, if one takes two different field line shapes satisfying (1),

(2) and (5), and splices them together at z = 0 , the motion in the

resulting field will still be drift-free, as has been claimed.

In the case of the field of (1) and (2) it is possible to choose

z

0 = xB - x dz (22)
0

S=y (23)

and calculation then shows that both B and s depend on z alone, the

elimination of which leads to the condition (20). Analytic examples or

even existence proofs for the axially symmetric case are not known.

Application to the Plasma Sheet

The form of the magnetic field given in equation (1) and in particular

the configuration shown in Figure 1 resemble in many way the magnetic
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field observed in the earth's tail, in the plasma sheet region. In

that region the value of Bz gradually decreases from about 4y at

2 0 Re to 0.5 7 at 70 Re [Behannon, 1970, table on p. 751 ; Bowling

and Wolf, 1974 while tBx/raz 4 7/R e  at a distance of 80 Re

The preceding theory suggests that the mean velocity v of charged
y

particles across the plasma sheet is relatively small. If the current

density observed in the tail can be entirely attributed to the mean drift

of particles - a point examined separately later on - then the magnitude

of the tail current can be used to estimate vy in the following way.

At a distance of 20 R the change in B across the plasma sheete x

amounts to about 20 y , representing a current of about 105 amperes for

each Re of plasma sheet length. Assuming that the current is carried

mainly by protons (which are considerably more energetic than electrons

and therefore drift more rapidly) and taking the plasma density in the

middle of the sheet as 0.5 protons/cm3  over a width of 6 Re , one

finds that in order to maintain the observed current, the protons must

move with an average cross-sheet velocity

v 5.13 km/sec

A very rough theoretical estimate of what v ought to be is
y

obtained from eq. (8) , which assumes protons to be adiabatic and

equatorial. If a typical plasma sheet proton has an energy of 2 kev,

one finds v s 620 km/sec, Rg 9 1/3 Re (in a field of 3y) while the

work of Behannon [LO] suggests Lx ; 15 Re , leading to

vy 6.9 km/sec
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The agreement obtained here should only be considered as qualitative,

for at least two reasons. First, the conditions for which (8) has been

derived are not generally met and secondly, we have ignored the effects

due to density variations in a diamagnetic plasma.

Concerning the second point it should be noted that the plasma sheet

current density J is contributed not only by the drift velocity v
Y

of charged particles but also by the variation in the density M of

magnetic moment. The latter contribution is called the magnetization

current density [e.g. Longmire, 1 and equals V XM

In a strictly drift-free configuration of the type discussed here,

if the plasma density N does not vary with x then VX M does

not contribute to the total current, for the following reason . Assume

that the plasma sheet is bounded at z - + z0 by plasma-free regions

(Figure 2). If V M is now integrated over a rectangular cross-

sectional area of the sheet, bounded by z = ± z (z1 > z) , x = x i

and x = x2 , then the integral equals the total magnetization current

through the given area. Converting the integral into a contour integral

of M around the area, it is seen that as long as no x dependence

exists, the result vanishes.

Even if N does not depend on x , however, a weak dependence of

Bz on x (as was assumed here) causes a non-vanishing total magneti-

zation current, since the contributions of the segments with x = xl

and x = x2 to the contour integral then no longer cancel each other.

To the lowest order of approximation the result turns out to be propor-



tional to eB z/~x ; in a similar way, the current conducted by

particle drifts is also proportional to IBZ'/ X , which suggests

that in nearly drift-free geometries the contributions of both these

mechanisms to are roughly of the same order.

It is interesting to compare these results to the work of Bird

and Beard [1972] who computed numerically the contributions to

from the curvature drift current, the gradient drift current and the

magnetization current, in a model field representing the magnetospheric

tail (Figure 1 in their paper). As expected the first two sources of

current tend to have opposite effects; the magnetization current has

an appreciable effect on the dependence of . on z , but its

contribution to the total current is small and the total current density

from all sources is likewise small.

One also should be careful here to note (as was pointed out by one

of the referees) that the guiding center approximation cannot always

be assumed to hold. The mean energy of plasma sheet protons near z = 0

at 18 Re peaks between 2 and 5 key [Bame et al., 1] . Taking

3 key as a typical value of the energy at 30 Re where Bz  27y , we

find a gyration radius of about 0.6 Re . On the other hand, if

1B x/1 Z , 4 /Re , the scale of field variation is about

Bz / (lBx/' z) P 0.5 Re

This suggests that near the mid-plane of the plasma sheet many of the

protons may be moving in non-adiabatic orbits. The preceding theory

suggests that the motion of such protons, too, is nearly drift-free, but

for more quantitative conclusions their orbits must be examined numeri-
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cally, as has been done in the work of Pudovkin and Tsyganenko 173]

Numerical work can also clarify the transition from the drift-free mode

to the meandering mode of Sonnerup which, as was noted, is not

drift free.
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Appendix

For completeness, the vanishing of the mean drift velocity in the field

of eq. (1) is derived here by straightforward integration. The gradient

and curvature drifts are

v = (v/2B 2 ) B X ?B - (v, 2 /2W)(B 2 /B3) dBx/dz (A-l)

vXc = (V 2/ B2) BXX[I (xB J

S (v,2/) (B2/B 3 ) dB dz A (A-2)

Assuming that the particle oscillates between mirror points with a

period t , the mean drift velocity is

<= (/') f )av dt (A-3)

where the integration extends from z = 0 to the mirror point and ( )
av

implies averaging over a gyration period. It will be found convenient

to use as integration variable the field intensity B observed by the

particle and to express eq. (A-3) as

<> (B)m ()av (IBdt) - dB (A-4)B
z

To evaluate dB/dt two unit vectors are introduced, B aligned with
B and N orthogonal to in in the (x, z) plane :

B = B'I (Bx + Bz z) (A-5)

= B' (-Bz +Bxz) (A-6)
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This gives

z = 1(Bz B + x N) (A-7)

Using the z coordinate to measure the particle's progress along its

guiding field line one gets

dB/dt = (dB/dz)(dz/dt) =(Bx/B) dBx/dz (v) (A-8)

by (A-7)

S= B (B x Vn )  (A-9)

where vn  is the velocity component along N . Averaged over a guiding

center gyration, to lowest order

(v ) = 0 (A-10)n av

and therefore

(dB/dt)av = (vI Bx Bz/B2) dBx/dz (A-l1)

Also, if the rapid gyration around the guiding center is averaged out,

then (s)av of equation (A-4) simply becomes the combined drift velocity

contributed by (A-1) and (A-2)

(Y)a = dBx/dz (2)B s3 )-1 (2 B2 2  - B2 v2 ) (A-12)av x z 4 x

Denoting by Bm  the field intensity at the mirror point, one finds

from the conservation of the magnetic moment
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v = v 2 (B/Bm)

(A-13)

2 = v [1 (B/B)]

Finally, if (A-11) to (A-15) are substituted in (A-4), the resulting

expression has the form

Bm 2 B2 B - B2 B - B3

< = const f m z dB (A-14)
z (B2-. 2)l/2 (B - B)1/2 B2

z m

The constant appearing here contains T, W/B , v and Bz ; the

derivative dBx/dz cancels out while Bx  itself is expressed in

terms of B , as in the first factor in the denominator. It may then

be shown that the integral vanishes, by dividing it into two parts and

using integration by parts to show that they cancel. It follows that

the mean guiding center drift vanishes, as has been claimed.
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Captions to Figures

Figure 1 - Field lines in a drift-free magnetic field, with the

projection of a trapped orbit schematically shown.

Figure 2 Integration contour used in showing that in the absence

of an x-dependence of plasma density and magnetic field,

the contribution of the magnetization current to the

total current in a drift-free model of the plasma sheet

vanishes.
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